Login / Signup

Heteroleptic Chini-Type Platinum Clusters: Synthesis and Characterization of Bis-Phospine Derivatives of [Pt3n(CO)6n]2- (n = 2-4).

Cristiana CesariIacopo CiabattiCristina FemoniMaria Carmela IapalucciFederica ManciniStefano Zacchini
Published in: Inorganic chemistry (2017)
The reactions of [Pt3n(CO)6n]2- (n = 2-4) homoleptic Chini-type clusters with stoichiometric amounts of Ph2PCH2CH2PPh2 (dppe) result in the heteroleptic Chini-type clusters [Pt6(CO)10(dppe)]2-, [Pt9(CO)16(dppe)]2-, and [Pt12(CO)20(dppe)2]2-. Their formation is accompanied by slight amounts of neutral species such as Pt4(CO)4(dppe)2, Pt6(CO)6(dppe)3, and Pt(dppe)2. A similar behavior was observed with the chiral ligand R-Ph2PCH(Me)CH2PPh2 (R-dppp), and two isomers of [Pt9(CO)16(R-dppp)]2- were identified. All the new species were spectroscopically characterized by means of IR and 31P NMR, and their structures were determined by single-crystal X-ray diffraction. The results obtained are compared to those previously reported for monodentate phosphines, that is, PPh3, as well as more rigid bidentate ligands, that is, CH2═C(PPh2)2 (P^P), CH2(PPh2)2 (dppm), and o-C6H4(PPh2)2 (dppb). From a structural point of view, functionalization of anionic platinum Chini clusters preserves their triangular Pt3 units, whereas the overall trigonal prismatic structures present in the homoleptic clusters are readily deformed and transformed upon functionalization. Such transformations may be just local deformations, as found in [Pt9(CO)16(dppe)]2-, [Pt9(CO)16(R-dppp)]2-, [Pt12(CO)22(PPh3)2]2-, and [Pt9(CO)16(PPh3)2]2-; an inversion of the cage from trigonal prismatic to octahedral, as observed in [Pt6(CO)10(dppe)]2- and [Pt6(CO)10(PPh3)2]2-; the reciprocal rotation of two trigonal prismatic units with the loss of a Pt-Pt contact as found in [Pt12(CO)20(dppe)2]2-.
Keyphrases
  • high resolution
  • magnetic resonance imaging
  • magnetic resonance
  • computed tomography
  • mass spectrometry
  • ionic liquid
  • solid state