Login / Signup

Rates of Cr(VI) Generation from CrxFe1-x(OH)3 Solids upon Reaction with Manganese Oxide.

Chao PanHuan LiuJeffrey G CatalanoAo QianZimeng WangDaniel E Giammar
Published in: Environmental science & technology (2017)
The reaction of manganese oxides with Cr(III)-bearing solids in soils and sediments can lead to the natural production of Cr(VI) in groundwater. Building on previous knowledge of MnO2 as an oxidant for Cr(III)-containing solids, this study systematically evaluated the rates and mechanisms of the oxidation of Cr(III) in iron oxides by δ-MnO2. The Fe/Cr ratio (x = 0.055-0.23 in CrxFe1-x(OH)3) and pH (5-9) greatly influenced the Cr(VI) production rates by controlling the solubility of Cr(III) in iron oxides. We established a quantitative relationship between Cr(VI) production rates and Cr(III) solubility of CrxFe1-x(OH)3, which can help predict Cr(VI) production rates at different conditions. The adsorption of Cr(VI) and Mn(II) on solids shows a typical pH dependence for anions and cations. A multichamber reactor was used to assess the role of solid-solid contact in CrxFe1-x(OH)3-MnO2 interactions, which eliminates the contact of the two solids while still allowing aqueous species transport across a permeable membrane. Cr(VI) production rates were much lower in multichamber than in completely mixed batch experiments, indicating that the redox interaction is accelerated by mixing of the solids. Our results suggest that soluble Cr(III) released from CrxFe1-x(OH)3 solids to aqueous solution can migrate to MnO2 surfaces where it is oxidized.
Keyphrases
  • healthcare
  • mass spectrometry
  • aqueous solution
  • risk assessment
  • high resolution
  • cystic fibrosis
  • nitric oxide
  • wastewater treatment
  • drinking water
  • room temperature
  • health risk
  • visible light