Genomic Characteristion of Opportunistic Pathogen Kluyvera Reveals a Novel CTX-M Subgroup.
Keyi YuZhenzhou HuangRuiting LanJohn Glenn MorrisYue XiaoSongzhe FuHe GaoXuemei BaiKun LiDuochun WangPublished in: Microorganisms (2023)
A rising incidence of clinical infections has been caused by Kluyvera , a significant opportunistic pathogen. Meanwhile, Kluyvera acts as an important reservoir of bla CTX-Ms , which are the dominant genes of class A extended-spectrum β-lactamases (ESBLs). In this work, 60 strains of Kluyvera were subjected to phylogenetic relationship reconstruction, antimicrobial susceptibility testing, and antibiotic resistance genes prediction. All mature bla CTX-Ms were gathered to perform subgroup reclassification. The findings demonstrate that Kluyvera has a large gene pool with significant genetic flexibility. Notably, 25% of strains showed simultaneous detection of ESBLs and carbapenem resistance genes. The genotypes of fourteen novel bla CTX-Ms were identified. A new subgroup classification approach for bla CTX-Ms was defined by using 20 amino acid site variants, which could split bla CTX-Ms into 10 subgroups. The results of the subgroup division were consistent with the phylogenetic clustering. More significantly, we proposed a novel bla CTX-M subgroup, KLUS, that is chromosomally encoded in K. sichuanensis and the new species put forward in this study, showing amino acid differences from the currently known sequences. Cloning and transformation tests demonstrated that the recipient bacteria had a robust phenotype of cefotaxime resistance. Closely related Kluyvera species had bla CTX-Ms in the same subgroup. Our research lays the groundwork for a deeper comprehension of Kluyvera and emphasizes how important a bla CTX-M reservoir it is. We provide an update on bla CTX-M subgroups reclassification from the aspects of phylogenetic relationship, amino acid differences, and the new subgroup KLUS, which needs to be strengthen monitored due to its strong resistance phenotype to cefotaxime.
Keyphrases
- klebsiella pneumoniae
- escherichia coli
- multidrug resistant
- mass spectrometry
- multiple sclerosis
- amino acid
- ms ms
- genome wide
- phase iii
- antibiotic resistance genes
- copy number
- machine learning
- drug resistant
- acinetobacter baumannii
- dna methylation
- clinical trial
- single cell
- transcription factor
- study protocol
- quantum dots
- anaerobic digestion
- genetic diversity
- loop mediated isothermal amplification