Programmed fluorine binding engineering in anion-pillared metal-organic framework for record trace acetylene capture from ethylene.
Xiao-Wen GuEnyu WuJia-Xin WangHui-Min WenBanglin ChenBin LiGuodong QianPublished in: Science advances (2023)
Porous physisorbents are attractive candidates for selective capture of trace gas or volatile compounds due to their low energy footprints. However, many physisorbents suffer from insufficient sorbate-sorbent interactions, resulting in low uptake or inadequate selectivity when gases are present at trace levels. Here, we report a strategy of programmed fluorine binding engineering in anion-pillared metal-organic frameworks to maximize C 2 H 2 binding affinity for benchmark trace C 2 H 2 capture from C 2 H 4 . A robust material (ZJU-300a) was elaborately designed to provide multiple-site fluorine binding model, resulting in an ultrastrong C 2 H 2 binding affinity. ZJU-300a exhibits a record-high C 2 H 2 uptake of 3.23 millimoles per gram (at 0.01 bar and 296 kelvin) and one of the highest C 2 H 2 /C 2 H 4 selectivity (1672). The adsorption binding of C 2 H 2 and C 2 H 4 was visualized by gas-loaded ZJU-300a structures. The separation capacity was confirmed by breakthrough experiments for 1/99 C 2 H 2 /C 2 H 4 mixtures, affording the maximal dynamic selectivity (264) and C 2 H 4 productivity of 436.7 millimoles per gram.