Phase Separation Behavior of Aqueous Poly(N-isopropylacrylamide) Solutions Studied by Scattering Experiments.
Jiayun HanRintaro TakahashiChen KuangTakahiro SatoPublished in: Langmuir : the ACS journal of surfaces and colloids (2021)
We have investigated the colloidal phase-separating dilute solution of aqueous poly(N-isopropylacrylamide) (PNIPAM) with a molecular weight of 1.24 × 105 by small-angle X-ray scattering (SAXS) as well as static and dynamic light scattering (SLS and DLS). Those scattering experiments provide us with the average size and size distribution of concentrated-phase droplets and the concentration cconc of the coexisting concentrated phase. While the average droplet size is almost constant above 35 °C in the temperature-scan experiments, it is a decreasing function of temperature above 35 °C in the temperature-jump experiments. This heating rate dependence of the average droplet size arises from the fact that concentrated-phase droplets in the aqueous PNIPAM solution grow only in a limited temperature range (31.5-35 °C). The scattering results on the temperature dependence of cconc are combined with previously reported results of turbidity and DSC, giving the phase diagram of the Type II phase behavior with the off-zero critical point at high molecular weight.