Login / Signup

Per a 5-derived T-cell peptides modulate NF-kB signalling to ameliorate allergic inflammation systemically in murine model of cockroach allergic hyper-reactivity.

Swati SharmaEkta NagarNaveen Arora
Published in: Clinical and experimental immunology (2022)
Peptide immunotherapy (PIT) represents a safe and efficacious therapeutic regimen with in-consequential side-effects. The present study aims to identify T-cell epitopes of Per a 5 allergen, a delta class GST from Periplaneta americana and investigate effect of peptide treatment in murine model of cockroach allergen-mediated hyper-reactivity. The epitopes (TC-P1, TC-P2, and TC-P3) were identified as promiscuous MHC-II binders by MHC-Pred, ProPred, and IEDB analysis tool. Murine model of cockroach allergic hyper-reactivity was generated in Balb/c mice. A marked reduction in cellular infiltration in lungs (3-fold compared with Non-IT) was observed in T3-IT group as evidenced by total leucocyte count in BALF and histology. Specific IgE levels were reduced 3-fold in T2-IT and T3-IT compared with Non-IT with increase in IgG2a levels. IL-4 and IL-13 were reduced upto 2.5-fold in treatment groups compared with Non-IT group. Splenocytes revealed significant increase in levels of CD4+FoxP3+ T cells in TC-P1 and TC-P2 mice demonstrating a systemic shift towards Tregs. Peptide treatment downregulated NF-kB signalling in lung and enhanced the levels of immune-regulatory molecules α1-antitrypsin and elafin. Our results indicate that TC-P1 and TC-P3 alter Th2 cytokine milieu and antibody isotype ratio to suppress allergic inflammation. PIT modulates local and systemic mechanisms to resolve inflammation and possess potential for treatment in cockroach allergy.
Keyphrases
  • oxidative stress
  • signaling pathway
  • allergic rhinitis
  • type diabetes
  • insulin resistance
  • toll like receptor
  • risk assessment
  • regulatory t cells
  • high fat diet induced
  • pi k akt