Login / Signup

Impacts of Solvent and Alkyl Chain Length on the Lifetime of Singlet Cyclopentane-1,3-diyl Diradicaloids with π-Single Bonding.

Qian LiuZhe WangManabu Abe
Published in: The Journal of organic chemistry (2022)
The singlet 2,2-dialkoxycyclopentane-1,3-diyl diradicaloids are not only the important key intermediates in the process of bond homolysis but are also attracting attention as π-single bonding compounds. In the present study, the effects of solvent viscosity η (0.24-125.4 mPa s) and polarity π* (-0.11 to 1.00 kcal mol -1 ) on the reactivity of localized singlet diradicaloids were thoroughly investigated using 18 different solvents including binary mixed solvent systems containing ionic liquids. In low-η solvents (η < 1 mPa s), the lifetimes of singlet diradicaloids, which are determined by the rate constant for the isomerization of π-single-bonded singlet diradicaloids to the σ-bonded isomer, were substantially dependent on π*. Slower isomerization was observed in more polar solvents. In high-η solvents (η > 2 mPa s), the rate of isomerization was largely influenced by η in addition to π*. Slower isomerization was observed in more viscous solvents. Experimental results demonstrated the crucial roles of both solvent polarity and viscosity in the reactivity of singlet diradicaloids and thus clarified the characters of singlet diradicaloids and molecular motions during the chemical transformation. The dynamic solvent effect was further proved by a long alkyl chain introduced at a remote position of the reaction site.
Keyphrases
  • ionic liquid
  • room temperature
  • energy transfer
  • high resolution
  • quantum dots