Accurate Core-Excited States via Inclusion of Core Triple Excitations in Similarity-Transformed Equation-of-Motion Theory.
Megan SimonsDevin A MatthewsPublished in: Journal of chemical theory and computation (2022)
The phenomenon of orbital relaxation upon excitation of core electrons is a major problem in the linear-response treatment of core-hole spectroscopies. Rather than addressing relaxation through direct dynamical correlation of the excited state via equation-of-motion coupled cluster theory (EOMEE-CC), we extend the alternative similarity-transformed equation-of-motion coupled cluster theory (STEOMEE-CC) by including the core-valence separation (CVS) and correlation of triple excitations only within the calculation of core ionization energies. This new method, CVS-STEOMEE-CCSD+cT, significantly improves on CVS-EOMEE-CCSD and unmodified CVS-STEOMEE-CCSD when compared to full CVS-EOM-CCSDT for K-edge core-excitation energies of a set of small molecules. The improvement in both absolute and relative (shifted) peak positions is nearly as good as that for transition-potential coupled cluster (TP-CC), which includes an explicit treatment of orbital relaxation, and CVS-EOMEE-CCSD*, which includes a perturbative treatment of triple excitations.