Login / Signup

High-sensitivity dual-comb and cross-comb spectroscopy across the infrared using a widely tunable and free-running optical parametric oscillator.

Carolin P BauerZofia A BejmMichelle K BollierJustinas PupeikisBenjamin WillenbergUrsula KellerChristopher R Phillips
Published in: Nature communications (2024)
Dual-comb spectroscopy (DCS) enables high-resolution measurements at high speeds without the trade-off between resolution and update rate inherent to mechanical delay scanning. However, high complexity and limited sensitivity remain significant challenges for DCS systems. We address these via a wavelength-tunable dual-comb optical parametric oscillator (OPO) combined with an up-conversion detection method. The OPO is tunable from 1300-1670 nm (signal) and 2700-5000 nm (idler). Spatial multiplexing in both the laser and OPO cavities creates a near-common path arrangement, enabling comb-line-resolved measurements in free-running operation. The narrow instantaneous bandwidth results in high power per comb-line up to 160 μW in the mid-infrared. Through intra-cavity up-conversion based on cross-comb spectroscopy, we leverage these power levels while overcoming the sensitivity limitations of direct mid-infrared detection. This approach yields a high signal-to-noise ratio (50.2 dB Hz 1/2 ) and high dual-comb figure of merit (3.5 × 10 8 Hz 1/2 ). This scheme enabled detecting ambient methane over a 3-meter path length in millisecond time scale.
Keyphrases
  • high resolution
  • air pollution
  • photodynamic therapy
  • mass spectrometry
  • high intensity
  • particulate matter
  • energy transfer