Renormalization group analysis of weakly interacting van der Waals Fermi system.
Sushant Kumar BeheraMadhavi AhalawatSubrata JanaPrasanjit SamalPritam DebPublished in: Journal of physics. Condensed matter : an Institute of Physics journal (2021)
Weak-coupling phenomena of the two-dimensional Hubbard model is gaining momentum as a new interesting research field due to its extraordinarily rich behavior as a function of the carrier density and model parameters. Salmhofer (1998Commun.Math.Phys.194249; 2001Phys.Rev.Lett.87187004) developed a new renormalization-group method for interacting Fermi systems and Metzner (2000Phys.Rev. B617364; 2000Phys.Rev.Lett.855162) implemented this renormalization group analysis of the two-dimensional Hubbard model. In this work, we demonstrate the spin-wave dependent electronic structure and susceptibility behavior of model graphene-phosphorene van der Waals heterostructure in the framework of renormalization group approach. We implement singlet vertex response function for the weakly interacting van der Waals Fermi system with nearest-neighbor hopping amplitudes. This analytical approach is further extended for spin-wave dependent susceptibility behavior. We present the resulting compressibility and phase diagram in the vicinity of half-filling, and also results for the density dependence of the critical energy scale.