System Integrated Information.
William MarshallMatteo GrassoWilliam G P MaynerAlireza ZaeemzadehLeonardo S BarbosaErick ChastainGraham FindlayShuntaro SasaiLarissa AlbantakisGiulio TononiPublished in: Entropy (Basel, Switzerland) (2023)
Integrated information theory (IIT) starts from consciousness itself and identifies a set of properties (axioms) that are true of every conceivable experience. The axioms are translated into a set of postulates about the substrate of consciousness (called a complex), which are then used to formulate a mathematical framework for assessing both the quality and quantity of experience. The explanatory identity proposed by IIT is that an experience is identical to the cause-effect structure unfolded from a maximally irreducible substrate (a Φ-structure). In this work we introduce a definition for the integrated information of a system (φs) that is based on the existence, intrinsicality, information, and integration postulates of IIT. We explore how notions of determinism, degeneracy, and fault lines in the connectivity impact system-integrated information. We then demonstrate how the proposed measure identifies complexes as systems, the φs of which is greater than the φs of any overlapping candidate systems.