Fast detection of toxic metals in crops is important for monitoring pollution and ensuring food safety. In this study, laser-induced breakdown spectroscopy (LIBS) was used to detect the chromium content in rice leaves. We investigated the influence of laser wavelength (532 nm and 1064 nm excitation), along with the variations of delay time, pulse energy, and lens-to-sample distance (LTSD), on the signal (sensitivity and stability) and plasma features (temperature and electron density). With the optimized experimental parameters, univariate analysis was used for quantifying the chromium content, and several preprocessing methods (including background normalization, area normalization, multiplicative scatter correction (MSC) transformation and standardized normal variate (SNV) transformation were used to further improve the analytical performance. The results indicated that 532 nm excitation showed better sensitivity than 1064 nm excitation, with a detection limit around two times lower. However, the prediction accuracy for both excitation wavelengths was similar. The best result, with a correlation coefficient of 0.9849, root-mean-square error of 3.89 mg/kg and detection limit of 2.72 mg/kg, was obtained using the SNV transformed signal (Cr I 425.43 nm) induced by 532 nm excitation. The results indicate the inspiring capability of LIBS for toxic metals detection in plant materials.