Login / Signup

Solution-processed silicon quantum dot photocathode for hydrogen evolution.

Miho TakadaKosuke InoueHiroshi SugimotoMinoru Fujii
Published in: Nanotechnology (2021)
The photoelectrochemical response of a photocathode made from a colloidal solution of boron (B) and phosphorus (P) codoped silicon (Si) quantum dots (QDs) 2-11 nm in diameters is studied. Since codoped Si QDs are dispersible in alcohol and water due to the hydrophilic surface, a photoelectrode with a smooth surface is produced by drop-coating the QD solution on an indium tin oxide substrate. The codoping provides high oxidation resistance to Si QDs and makes the electrode operate as a photocathode. The photoelectrochemical response of a Si QD photoelectrode depends strongly on the size of QDs; there is a transition from anodic to cathodic photocurrent around 4 nm in diameter. Below the size, anodic photocurrent due to self-oxidation of Si QDs is observed, while above the size, cathodic photocurrent due to electron transfer across the interface is observed. The cathodic photocurrent increases with increasing the size, and in some samples, it is observed for more than 3000 s under intermittent light irradiation.
Keyphrases