pH-Triggered Charge-Reversal Mesoporous Silica Nanoparticles Stabilized by Chitosan Oligosaccharide/Carboxymethyl Chitosan Hybrids for Effective Intracellular Delivery of Doxorubicin.
Lan CuiWentao LiuHao LiuQian QinShuangxia WuSuqin HeXinchang PangChengshen ZhuPeihong ShenPublished in: ACS applied bio materials (2019)
Surface modification of mesoporous silica nanoparticles (MSNs) is a promising way to enhance therapeutic efficacy and minimize side effects of anticancer drugs. In this work, MSNs with reduced particle size and optimum pore diameter were obtained and catalyzed by ammonia/triethanolamine. In view of the negatively charged carboxymethyl chitosan (CMC) and positively charged chitosan oligosaccharide (CS), the pH-triggered charge-reversal CS/CMC bilayer was designed as a stimuli-responsive switch for MSNs via the protonation and deprotonation effect. The results showed that MSNs-CS/CMC were core-shell and mesoporous in structure. Surface charge conversion and pH dependence were clearly observed in the doxorubicin hydrochloride (DOX) delivery. The intracellular uptake indicated that DOX@MSNs-CS/CMC could be distributed in the cytoplasm of MCF-7 cells and exhibited lower toxicity, which would improve the stability and prolong the retention time compared to free DOX and unmodified DOX@MSNs at pH 7.4. Moreover, the cellular uptake and internalization of DOX@MSNs-CS/CMC were enhanced to promote drug delivery into the cell nucleus at pH 6.5. The biocompatible and surface-charge-reversible MSNs-CS/CMC have the potential to prolong the retention time in the bloodstream, facilitate the endosome escape, and enrich the targeted antitumor strategy, providing an alternative platform for efficient drug delivery in breast cancer therapy.
Keyphrases
- drug delivery
- cancer therapy
- drug release
- induced apoptosis
- escherichia coli
- oxidative stress
- high throughput
- cell death
- room temperature
- risk assessment
- cell cycle arrest
- wound healing
- signaling pathway
- endoplasmic reticulum stress
- cell proliferation
- reactive oxygen species
- pi k akt
- optical coherence tomography
- bone marrow