Login / Signup

Obstacle-induced giant jammed aggregation of active semiflexible filaments.

Ying WangYi-Wen GaoWen-de TianKang Chen
Published in: Physical chemistry chemical physics : PCCP (2022)
Filaments driven by bound motor proteins and chains of self-propelled colloidal particles are a typical example of active polymers (APs). Due to deformability, APs exhibit very rich dynamic behaviors and collective assembling structures. Here, we are concerned with a basic question: how APs behave near a single obstacle? We find that, in the presence of a big single obstacle, the assembly of APs becomes a two-state system, i.e. APs either gather nearly completely together into a giant jammed aggregate (GJA) on the surface of the obstacle or distribute freely in space. No partial aggregation is observed. Such a complete aggregation/collection is unexpected since it happens on a smooth convex surface instead of, e.g. , a concave wedge. We find that the formation of a GJA experiences a process of nucleation and the curves of the transition between the GJA and the non-aggregate state form hysteresis-like loops. Statistical analysis of massive data on the growing time, chirality and angular velocity of both the GJAs and the corresponding nuclei shows the strong random nature of the phenomenon. Our results provide new insights into the behavior of APs in contact with porous media and also a reference for the design and application of polymeric active materials.
Keyphrases
  • big data
  • mental health
  • electronic health record
  • high resolution
  • cancer therapy
  • machine learning
  • mass spectrometry
  • blood flow
  • data analysis