MSC-Derived Extracellular Vesicles Alleviate NLRP3/GSDMD-Mediated Neuroinflammation in Mouse Model of Sporadic Alzheimer's Disease.
Lishan LinLongxin HuangSen HuangWeineng ChenHeng HuangLi ChiFengjuan SuXiaoqing LiuKang YuanQiuhong JiangChangu LiWanli W SmithQingling FuZhong PeiPublished in: Molecular neurobiology (2024)
Alzheimer's disease (AD) is the most common neurodegenerative disease, with sporadic form being the predominant type. Neuroinflammation plays a critical role in accelerating pathogenic processes in AD. Mesenchymal stem cell (MSC)-derived small extracellular vesicles (MSC-sEVs) regulate inflammatory responses and show great promise for treating AD. Induced pluripotent stem cell (iPSC)-derived MSCs are similar to MSCs and exhibit low immunogenicity and heterogeneity, making them promising cell sources for clinical applications. This study examined the anti-inflammatory effects of MSC-sEVs in a streptozotocin-induced sporadic mouse model of AD (sAD). The intracisternal administration of iPSC-MSC-sEVs alleviated NLRP3/GSDMD-mediated neuroinflammation, decreased amyloid deposition and neuronal apoptosis, and mitigated cognitive dysfunction. Furthermore, it explored the role of miR-223-3p in the iPSC-MSC-sEVs-mediated anti-inflammatory effects in vitro. miR-223-3p directly targeted NLRP3, whereas inhibiting miR-223-3p almost completely reversed the suppression of NLRP3 by MSC-sEVs, suggesting that miR-223-3p may, at least partially, account for MSC-sEVs-mediated anti-inflammation. Results obtained suggest that intracisternal administration of iPSC-MSC-sEVs can reduce cognitive impairment by inhibiting NLRP3/GSDMD neuroinflammation in a sAD mouse model. Therefore, the present study provides a proof-of-principle for applying iPSC-MSC-sEVs to target neuroinflammation in sAD.
Keyphrases
- mouse model
- cognitive impairment
- traumatic brain injury
- stem cells
- lipopolysaccharide induced
- oxidative stress
- diabetic rats
- cerebral ischemia
- late onset
- type diabetes
- anti inflammatory
- signaling pathway
- induced pluripotent stem cells
- cell therapy
- drug induced
- cognitive decline
- skeletal muscle
- high fat diet
- endothelial cells
- machine learning
- stress induced
- pi k akt