Login / Signup

Novel Electron Donor Encapsulation Assay Based on the Split-type Photoelectrochemical Interface.

Rui XuLei LiuXuejing LiuYuyang LiRuiqing FengHuan WangDawei FanDan WuQin Wei
Published in: ACS applied materials & interfaces (2020)
In this research, a controlled-release photoelectrochemical (PEC) immunosensor is proposed on the basis of a novel encapsulation strategy by all-inorganic semiconductor materials. The controlled-release transmit system has been prepared and represented on account of a group-functional mesoporous silica nanosphere (MSN), utilizing surface-functionalized cadmium sulfide (CdS) nanoparticles as mobilizable caps to encapsulate a PEC electron donor ascorbic acid (AA) within the MSN mesoporous structure. This encapsulation strategy proceeds without any enzyme and acid/alkali to achieve the release of an electron donor. The complex is formed by encapsulating AA within MSN with CdS (CdS@MSN-AA) as a signal amplifier labeled on the secondary antibody. In addition, the immunological recognition process was performed in a 96-well plate, and the reciprocal interference between biorecognition and PEC analysis could be eliminated through a split-type framework. Bi2S3-sensitized porous In2O3 nanoparticles as a substrate matrix provide basic PEC response. The developed sensor exhibited a mensurable output of procalcitonin (PCT) concentration (as an example) in the detection range of 0.001-200 ng/mL along with a limit of detection of 0.31 pg/mL. Featuring the novel method for electron release, this sensitive PEC strategy provides an innovative way for the potential application for other targets.
Keyphrases