Login / Signup

Study of Edge and Screw Dislocation Density in GaN/Al2O3 Heterostructure.

Vladimir Lucian EneDoru DinescuIulia ZaiNikolay DjourelovBogdan Ştefan VasileAndreea Bianca SerbanVictor LecaEcaterina Andronescu
Published in: Materials (Basel, Switzerland) (2019)
This study assesses the characteristics (edge and screw dislocation density) of a commercially available GaN/AlN/Al2O3 wafer. The heterostructure was evaluated by means of high-resolution X-ray diffraction (HR-XRD), high-resolution transmission electron microscopy (HR-TEM), and Doppler-Broadening Spectroscopy (DBS). The results were mathematically modeled to extract defect densities and defect correlation lengths in the GaN film. The structure of the GaN film, AlN buffer, Al2O3 substrate and their growth relationships were determined through HR-TEM. DBS studies were used to determine the effective positron diffusion length of the GaN film. Within the epitaxial layers, defined by a [GaN P 63 m c (0 0 0 2) || P 63 m c AlN (0 0 0 2) || (0 0 0 2) R 3 ¯ c Al2O3] relationship, regarding the GaN film, a strong correlation between defect densities, defect correlation lengths, and positron diffusion length was assessed. The defect densities ρ d e = 6.13 × 1010 cm-2, ρ d s = 1.36 × 1010 cm-2, along with the defect correlation lengths Le = 155 nm and Ls = 229 nm found in the 289 nm layer of GaN, account for the effective positron diffusion length Leff~60 nm.
Keyphrases