Layered S-Bridged Covalent Triazine Frameworks via a Bifunctional Template-Catalytic Strategy Enabling High-Performance Zinc-Ion Hybrid Supercapacitors.
Bei LiuYirong QianJun ZhangMei YangYijiang LiuShiguo ZhangPublished in: Small (Weinheim an der Bergstrasse, Germany) (2024)
Exploring covalent triazine frameworks (CTFs) with high capacitative activity is highly desirable and challenging. Herein, the S-rich CTFs cathode is pioneeringly introduced in Zn-ion hybrid supercapacitors (ZSC), achieving outstanding capacity and energy density, and satisfactory anti-freezing flexibility. Specifically, the S-bridged CTFs are synthesized by a bifunctional template-catalytic strategy, where ZnCl 2 serves as both the catalyst/solvent and in situ template to construct triazine frameworks with interconnected pores and layered gaps. The resultant CTFs (CTFS-750) are employed as a reasonable pattern-like system to more deeply scrutinize the synergistic effect of S-bridged triazine and layered porous architecture for polymer-based cathodes in Zn-ion storage. The experimental results indicate that the adsorption barriers of Zn-ions on CTFS-750 are effectively weakened, and accessible Zn 2+ -absorption sites provided by the C─S─C and C═N bonds have been confirmed via DFT calculations. Consequently, the CTFS-750 cathode-assembled ZSC displays an ultra-high capacity of 211.6 mAh g -1 at 1.0 A g -1 , an outstanding energy density of 202.7 Wh kg -1 , and attractive cycling performance. Moreover, the resulting flexible ZSC device shows superior capacity, good adaptability, and satisfactory anti-freezing behavior. This approach sheds new light on constructing advanced polymer-based cathodes at the atom level and paves the way for fabricating high-performance ZSC and beyond.
Keyphrases
- reduced graphene oxide
- ion batteries
- highly efficient
- gold nanoparticles
- heavy metals
- solid phase extraction
- molecularly imprinted
- molecular dynamics
- metal organic framework
- density functional theory
- ionic liquid
- quantum dots
- crystal structure
- high resolution
- aqueous solution
- molecular dynamics simulations
- tandem mass spectrometry