Login / Signup

Anatomo-Functional Origins of the Cortical Silent Period: Spotlight on the Basal Ganglia.

David ZeuginSilvio Ionta
Published in: Brain sciences (2021)
The so-called cortical silent period (CSP) refers to the temporary interruption of electromyographic signal from a muscle following a motor-evoked potential (MEP) triggered by transcranial magnetic stimulation (TMS) over the primary motor cortex (M1). The neurophysiological origins of the CSP are debated. Previous evidence suggests that both spinal and cortical mechanisms may account for the duration of the CSP. However, contextual factors such as cortical fatigue, experimental procedures, attentional load, as well as neuropathology can also influence the CSP duration. The present paper summarizes the most relevant evidence on the mechanisms underlying the duration of the CSP, with a particular focus on the central role of the basal ganglia in the "direct" (excitatory), "indirect" (inhibitory), and "hyperdirect" cortico-subcortical pathways to manage cortical motor inhibition. We propose new methods of interpretation of the CSP related, at least partially, to the inhibitory hyperdirect and indirect pathways in the basal ganglia. This view may help to explain the respective shortening and lengthening of the CSP in various neurological disorders. Shedding light on the complexity of the CSP's origins, the present review aims at constituting a reference for future work in fundamental research, technological development, and clinical settings.
Keyphrases
  • transcranial magnetic stimulation
  • high frequency
  • spinal cord
  • skeletal muscle
  • working memory
  • multiple sclerosis
  • white matter
  • children with cerebral palsy