Login / Signup

Single-crosslink microscopy in a biopolymer network dissects local elasticity from molecular fluctuations.

Lingxiang JiangQingqiao XieBoyce TsangSteve Granick
Published in: Nature communications (2019)
Polymer networks are fundamental from cellular biology to plastics technology but their intrinsic inhomogeneity is masked by the usual ensemble-averaged measurements. Here, we construct direct maps of crosslinks-symbolic depiction of spatially-distributed elements highlighting their physical features and the relationships between them-in an actin network. We selectively label crosslinks with fluorescent markers, track their thermal fluctuations, and characterize the local elasticity and cross-correlations between crosslinks. Such maps display massive heterogeneity, reveal abundant anticorrelations, and may contribute to address how local responses scale up to produce macroscopic elasticity. Single-crosslink microscopy offers a general, microscopic framework to better understand crosslinked molecular networks in undeformed or strained states.
Keyphrases