Fast reversed-phase liquid chromatographic separation of proteins by flow-through poly(styrene-co-divinylbenzene) microspheres.
Qin-Ying LiLi-Yun MaLi XuPublished in: Journal of separation science (2019)
With the explosive growth of the bioscience and biopharmaceuticals, the demand for high efficient analysis and separation of proteins is urgent. High-performance liquid chromatography is an appropriate technology for this purpose, and the stationary phase is the kernel to the separation efficiency. In this study, flow-through poly(styrene-co-divinylbenzene) microspheres characteristic of the binary pores, i.e. flow-through pores and mesopores, were synthesized; this special porous structure would benefit the convective mass transfer while guarantee the high specific surface area. Owing to the hydrophobic nature, poly(styrene-co-divinylbenzene) microspheres were suitable as the reversed-phase stationary phase for separation of proteins. For the high permeability of the poly(styrene-co-divinylbenzene) microspheres packed column, fast separation of the studied six proteins in ∼2 min was achieved. The recoveries of studied proteins were acceptable in the range of 79.0-99.4%. The proposed column had good pH stability of 1-13 and repeatability. Moreover, the column was applied for egg white fast separation, further demonstrating its applicability for complex bio-sample separation. The flow-through poly(styrene-co-divinylbenzene) microspheres were promising for fast separation of large molecules.