Global distribution of IRC7 alleles in Saccharomyces cerevisiae populations: a genomic and phenotypic survey within the wine clade.
Javier RuizMiguel de CelisMaría Martín-SantamaríaIván Benito-VázquezAna PontesVal F LanzaJosé Paulo SampaioAntonio SantosIgnacio BeldaPublished in: Environmental microbiology (2021)
The adaptation to the different biotic and abiotic factors of wine fermentation has led to the accumulation of numerous genomic hallmarks in Saccharomyces cerevisiae wine strains. IRC7, a gene encoding a cysteine-S-β-lyase enzyme related volatile thiols production in wines, has two alleles: a full-length allele (IRC7F ) and a mutated one (IRC7S ), harbouring a 38 bp-deletion. Interestingly, IRC7S -encoding a less active enzyme - appears widespread amongst wine populations. Studying the global distribution of the IRC7S allele in different yeast lineages, we confirmed its high prevalence in the Wine clade and demonstrated a minority presence in other domesticated clades (Wine-PDM, Beer and Bread) while it is completely missing in wild clades. Here, we show that IRC7S -homozygous (HS) strains exhibited both fitness and competitive advantages compared with IRC7F -homozygous (HF) strains. There are some pieces of evidence of the direct contribution of the IRC7S allele to the outstanding behaviour of HS strains (i.e., improved response to oxidative stress conditions and higher tolerance to high copper levels); however, we also identified a set of sequence variants with significant co-occurrence patterns with the IRC7S allele, which can be co-contributing to the fitness and competitive advantages of HS strains in wine fermentations.