Multiaxial Molecular Ferroelectric Thin Films Bring Light to Practical Applications.
Yuan-Yuan TangPeng-Fei LiWei-Qiang LiaoPing-Ping ShiYu-Meng YouRen-Gen XiongPublished in: Journal of the American Chemical Society (2018)
Though dominating most of the practical applications, inorganic ferroelectric thin films usually suffer from the high processing temperatures, the substrate limitation, and the complicated fabrication techniques that are high-cost, energy-intensive, and time-consuming. By contrast, molecular ferroelectrics offer more opportunities for the next-generation flexible and wearable devices due to their inherent flexibility, tunability, environmental-friendliness, and easy processability. However, most of the discovered molecular ferroelectrics are uniaxial, one major obstacle for improving the thin-film performance and expanding the application potential. In this Perspective, we overview the recent advances on multiaxial molecular ferroelectric thin films, which is a solution to this issue. We describe the strategies for screening multiaxial molecular ferroelectrics and characterizations of the thin films, and highlight their advantages and future applications. Upon rational and precise design as well as optimizing ferroelectric performance, the family of multiaxial molecular ferroelectric thin films surely will get booming in the near future and inject vigor into the century-old ferroelectric field.