Login / Signup

Conductive Polymers: Opportunities and Challenges in Biomedical Applications.

Toktam NezakatiAmelia SeifalianAaron TanAlexander Marcus Seifalian
Published in: Chemical reviews (2018)
Research pertaining to conductive polymers has gained significant traction in recent years, and their applications range from optoelectronics to material science. For all intents and purposes, conductive polymers can be described as Nobel Prize-winning materials, given that their discoverers were awarded the Nobel Prize in Chemistry in 2000. In this review, we seek to describe the chemical forms and functionalities of the main types of conductive polymers, as well as their synthesis methods. We also present an in-depth analysis of composite conductive polymers that contain various nanomaterials such as graphene, fullerene, carbon nanotubes, and paramagnetic metal ions. Natural polymers such as collagen, chitosan, fibroin, and hydrogel that are structurally modified for them to be conductive are also briefly touched upon. Finally, we expound on the plethora of biomedical applications that harbor the potential to be revolutionized by conductive polymers, with a particular focus on tissue engineering, regenerative medicine, and biosensors.
Keyphrases
  • tissue engineering
  • reduced graphene oxide
  • carbon nanotubes
  • drug delivery
  • public health
  • optical coherence tomography
  • quantum dots
  • room temperature
  • ionic liquid