The BcsD subunit of type I bacterial cellulose synthase interacts dynamically with the BcsAB catalytic core complex.
Tatsuya KondoYui NakamuraShingo NojimaMin YaoTomoya ImaiPublished in: FEBS letters (2022)
Cellulose synthase has two distinct functions: synthesis of the cellulose molecule (polymerization) and assembling the synthesized cellulose chains into the crystalline microfibril (crystallization). In the type I bacterial cellulose synthase (Bcs) complex, four major subunits - BcsA, BcsB, BcsC and BcsD - work in a coordinated manner. This study showed that the crystallization subunit BcsD interacts with the polymerization complex BcsAB in two modes: direct protein-protein interactions and indirect interactions through the product cellulose. We hypothesized that the former and latter modes represent the basal and active states of type I bacterial cellulose synthase, respectively, and this dynamic behaviour of the BcsD protein regulates the crystallization process of cellulose chains.