Login / Signup

Competitive Adsorption of Polycyclic Aromatic Hydrocarbons to Carbon Nanotubes and the Impact on Bioavailability to Fathead Minnow (Pimephales promelas).

Erica N LinardCindy M LeeTanju KaranfilPeter van den Hurk
Published in: Environmental toxicology and chemistry (2020)
Recent studies investigating the influence of carbon nanotubes (CNTs) on the bioavailability of organic contaminants have mostly focused on single-solute systems; however, a more likely scenario in the natural environment is a multisolute system where chemical interactions at the surface of the CNT may alter the bioavailability of these chemicals. In the present study bisolute adsorption isotherms of pairs of chemically similar polycyclic aromatic hydrocarbons (PAHs) by multiwalled carbon nanotubes (MWCNTs) were established, in conjunction with quantifying the bioavailability of the 2 competing MWCNT-adsorbed PAHs to Pimephales promelas using bile analysis by high-performance liquid chromatography with fluorescence detection. The results showed that whereas adsorption and bioavailability of chemically similar PAHs (anthracene and phenanthrene, and fluoranthene and pyrene) were the same in a single-solute system, in bisolute systems, PAHs that could better align or flex with the MWCNT surface due to morphological characteristics would outcompete the more rigid or planar PAHs. The bioavailability of individual PAHs in bisolute solutions increased by as much as 50% compared with single-solute solutions. However, the relationship between adsorption (i.e., Kd ) and concentration of PAH in the fish bile was similar in single and bisolute systems. This finding indicates that competitive interactions at the surface of MWCNTs influence bioavailability by way of altering adsorption affinity in a moderately predictable manner. Environ Toxicol Chem 2020;39:1702-1711. © 2020 SETAC.
Keyphrases