Login / Signup

Clinical, Biochemical, and Molecular Characterization of Metachromatic Leukodystrophy Among Egyptian Pediatric Patients: Expansion of the ARSA Mutational Spectrum.

Khalda AmrEkram FateenLobna MansourAngie Ms TossonMaha S ZakiGhada Mh Abdel SalamAhmed Nabil MohamedHala T El-Bassyouni
Published in: Journal of molecular neuroscience : MN (2020)
Metachromatic leukodystrophy (MLD) is a neurodegenerative disorder characterized by progressive demyelination due to deficiency of the enzyme arylsulfatase A (ARSA) in leukocytes, and consequently leads to impaired degradation and accumulation of cerebroside-3-sulfate (sulfatide). This study aimed to sequence the ARSA gene in a total of 43 patients with metachromatic leukodystrophy descendant from 40 Egyptian families. In addition, four carrier parents from two families with children who had died from MLD came to the clinic for genetic analysis. Prenatal diagnosis was performed for four families with molecularly diagnosed MLD sibs. Different mutations were characterized in our cohort, including missense, nonsense, splice, and deletion. Overall, 21 different mutations in the ARSA gene were detected, with 12 novel mutations, i.e. p.Arg60Pro, p.Tyr65*, p.Val112Asp, p.Arg116*, p.Gly124Asp, p.Pro193Ser, p.Gln238*, p.Gln456*, p.Thr276Lys, and p.Gly311Arg, in addition to two new acceptor splice-site mutations 685-1G > A and c.954_956 delCTT. The amniotic fluid samples revealed two carrier fetuses with heterozygous monoallelic mutations, and two affected fetuses had the homozygous biallelic mutations. In conclusion, the current study sheds light on the underlying ARSA gene defect, with an expansion of the mutation spectrum. To our knowledge, this is the first molecular study of MLD among the Egyptian population.
Keyphrases
  • copy number
  • genome wide
  • healthcare
  • multiple sclerosis
  • gene expression
  • intellectual disability
  • young adults