Login / Signup

Discrimination of Gain Increments in Speech-Shaped Noises.

Benjamin Caswell-MidwinterWilliam M Whitmer
Published in: Trends in hearing (2019)
Frequency-dependent gain adjustments are routine in hearing-aid fittings, whether in matching to real-ear targets or fine-tuning to patient feedback. Patient feedback may be unreliable and fittings inefficient if adjustments are not discriminable. To examine what gain adjustments are discriminable, we measured the just-noticeable differences (JNDs) for level increments in speech-shaped noises processed with prescription gains. JNDs were measured in the better ears of 38 participants with hearing impairment using a fixed-level, same-different task. JNDs were measured for increments at six individual frequency-bands: a 0.25-kHz low-pass band; octave-wide bands at 0.5, 1, 2, and 4 kHz; and a 6-kHz high-pass band. JNDs for broadband increments were also measured. JNDs were estimated at d' of 1 for a minimally discriminable increment in optimal laboratory conditions. The JND for frequency-band increments was 2.8 dB excluding the 0.25-kHz low-pass band, for which the JND was 4.5 dB. The JND for broadband increments was 1.5 dB. Participants' median frequency-band and broadband JNDs were positively correlated. JNDs were mostly independent of age, pure-tone thresholds, and cognitive score. In consideration of self-fitting adjustments in noisier conditions, JNDs were additionally estimated at a more sensitive d' of 2. These JNDs were 6 dB for bands below 1 kHz, and 5 dB for bands at and above 1 kHz. Overall, the results suggest noticeable fine-tuning adjustments of 3 dB and self-fitting adjustments of 5 dB.
Keyphrases
  • high frequency
  • hearing loss
  • high speed
  • case report
  • mass spectrometry
  • high resolution