Login / Signup

Mechanics of tension-induced film wrinkling and restabilization: a review.

Ting WangYifan YangFan Xu
Published in: Proceedings. Mathematical, physical, and engineering sciences (2022)
Wrinkling of thin films under tension is omnipresent in nature and modern industry, a phenomenon which has aroused considerable attention during the past two decades because of its intricate nonlinear behaviours and intriguing morphology changes. Here, we review recent advancements in the mechanics of tension-induced film wrinkling and restabilization, by identifying three major stages of its progress: small-strain (less than 5 % ) wrinkling of stiff sheets, finite-strain (up to 30 % ) wrinkling and restabilization (isola-centre bifurcation) of soft films, and the effects of curved configurations and material properties on pattern formation. Growing demand for fundamental understanding, quantitative prediction and precise tracking of secondary bifurcation transitions in morphological evolution of thin films helps to advance finite-strain plate/shell theories and sophisticated modelling methods. This progress not only promotes our insightful understanding of complex instability behaviour but also reveals novel phenomena and sheds light on developing wrinkle-tunable membrane structures and functional surfaces.
Keyphrases