Login / Signup

Heterologous Biosynthesis of Nodulisporic Acid F.

Kyle C Van de BittnerMatthew J NicholsonLeyla Y BustamanteSarah A KessansArvina RamCraig J van DolleweerdBarry ScottEmily J Parker
Published in: Journal of the American Chemical Society (2018)
Nodulisporic acids comprise a group of valuable indole diterpenes that exhibit potent insecticidal activities. We report the identification of a gene cluster in the genome of the filamentous fungus Hypoxylon pulicicidum (Nodulisporium sp.) that contains genes responsible for the biosynthesis of nodulisporic acids. Using Penicillium paxilli as a heterologous host, and through pathway reconstitution experiments, we identified the function of four genes involved in the biosynthesis of the nodulisporic acid core compound, nodulisporic acid F (NAF). Two of these genes (nodM and nodW) are especially significant as they encode enzymes with previously unreported functionality: nodM encodes a 3-geranylgeranylindole epoxidase capable of catalyzing only a single epoxidation step to prime formation of the distinctive ring structure of nodulisporic acids, and nodW encodes the first reported gene product capable of introducing a carboxylic acid moiety to an indole diterpene core structure that acts as a reactive handle for further modification. Here, we present the enzymatic basis for the biosynthetic branch point that gives rise to nodulisporic acids.
Keyphrases
  • genome wide
  • genome wide identification
  • copy number
  • bioinformatics analysis
  • gene expression
  • dna methylation
  • cell wall
  • genome wide analysis
  • hydrogen peroxide
  • anti inflammatory
  • bacillus subtilis