Login / Signup

Chestnut Drying Is Critical in Determining Aspergillus flavus Growth and Aflatoxin Contamination.

Simona PrencipeIlenia SicilianoCarlotta GattiMaria Lodovica GullinoAngelo GaribaldiDavide Spadaro
Published in: Toxins (2018)
Chestnut drying is used to prevent postharvest losses and microorganism contamination during storage. Several studies reported the contamination by aflatoxins (AFs) produced by Aspergillus spp. in chestnuts. The effect of drying temperatures (from 30 to 50 °C) was evaluated on the growth of A. flavus and the production of aflatoxins in chestnuts. The influence of the treatment on the proximate composition, the total phenol content and antioxidant activity of chestnuts was considered. Fungal colonization was observed on the nuts dried at 30, 35, and 40 °C; the incidence was lower at 40 °C. The highest concentrations of AFB₁ and AFB₂ were produced at 40 °C. No aflatoxins were detected at 45 or 50 °C. At 40 °C A. flavus was under suboptimal conditions for growth (aw 0.78), but the fungus was able to synthesize aflatoxins. As the temperatures applied increased, the total phenol content increased, while the antioxidant activity decreased. A drying treatment at 45 °C for seven days (aw 0.64) could be a promising method to effectively control both the growth of aflatoxigenic fungi and the production of aflatoxins. This study provides preliminary data useful to improve the current drying conditions used in chestnut mills, to reduce both fungal growth and aflatoxin production.
Keyphrases
  • risk assessment
  • drinking water
  • human health
  • machine learning
  • electronic health record
  • climate change
  • combination therapy
  • data analysis