Catching the Reversible Formation and Reactivity of Surface Defective Sites in Metal-Organic Frameworks: An Operando Ambient Pressure-NEXAFS Investigation.
Luca BragliaFrancesco TavaniSilvia MauriRaju EdlaDamjan KrizmancicAlessandro TofoniValentina ColomboPaola D'AngeloPiero TorelliPublished in: The journal of physical chemistry letters (2021)
In this work, we apply for the first time ambient pressure operando soft X-ray absorption spectroscopy (XAS) to investigate the location, structural properties, and reactivity of the defective sites present in the prototypical metal-organic framework HKUST-1. We obtained direct evidence that Cu+ defective sites form upon temperature treatment of the powdered form of HKUST-1 at 160 °C and that they are largely distributed on the material surface. Further, a thorough structural characterization of the Cu+/Cu2+ dimeric complexes arising from the temperature-induced dehydration/decarboxylation of the pristine Cu2+/Cu2+ paddlewheel units is reported. In addition to characterizing the surface defects, we demonstrate that CO2 may be reversibly adsorbed and desorbed from the surface defective Cu+/Cu2+ sites. These findings show that ambient pressure soft-XAS, combined with state-of-the-art theoretical calculations, allowed us to shed light on the mechanism involving the decarboxylation of the paddlewheel units on the surface to yield Cu+/Cu2+ complexes and their reversible restoration upon exposure to gaseous CO2.