Login / Signup

Elemental analysis of levitated solid samples by microwave-assisted laser induced breakdown spectroscopy.

Ali M AlamriWanxia ZhaoSteve TassiosSheng DaiZeyad T Alwahabi
Published in: The Analyst (2024)
A novel analysis technique of elements at ambient conditions has been developed. The technique is based on microwave-assisted laser-induced breakdown spectroscopy (MW-LIBS) applied to acoustically levitated samples. The technique has been demonstrated using three solid samples with different properties and compositions. These are ore containing multiple elements (OREAS 520), aluminium oxide (Al 3 O 2 ) and gypsum (CaSO 4 ·2H 2 O). The mass of samples was 21 mg, 23 mg, and 55 mg for gypsum, mineral ore, and Al 3 O 2 , respectively. Significant signal enhancements were recorded for a variety of elements, using microwave-assisted laser-induced breakdown spectroscopy and levitation (MW-LIBS-Levitation). The signal enhancement for Mn I (403.07 nm), Al I (396.13 nm) and Ca II (393.85 nm) was determined as 123, 46, and 63 times, respectively. Moreover, it was found that MW-LIBS-Levitation minimises the self-absorption of the Ca I (422.67 nm) and Na I (588.99 nm and 589.59 nm) spectral lines. In addition to the signal enhancements, the levitation process produces a spinning motion in the solids with an angular frequency of 7 Hz. This feature benefits laser-based analysis as a fresh sample is introduced at each laser pulse, eliminating the need for the usual mechanical devices. Based on the single-shot analysis, it was found that ∼80% of the laser pulses produced successful MW-LIBS-Levitation detection, confirming an impressive repeatability of the process. This contactless analytical technique can be applied in ambient pressure and temperature conditions with high sensitivity, which can benefit disciplines such as forensics science, isotope analysis, and medical analysis, where the sample availability is often diminutive.
Keyphrases