Construction of a dual-signal readout platform for effective glutathione S-transferase sensing based on polyethyleneimine-capped silver nanoclusters and cobalt-manganese oxide nanosheets with oxidase-mimicking activity.
Zejiao HuoYuntai LvNan WangChenyu ZhouXingguang SuPublished in: Mikrochimica acta (2024)
A novel dual-mode fluorometric and colorimetric sensing platform is reported for determining glutathione S-transferase (GST) by utilizing polyethyleneimine-capped silver nanoclusters (PEI-AgNCs) and cobalt-manganese oxide nanosheets (CoMn-ONSs) with oxidase-like activity. Abundant active oxygen species (O 2 •- ) can be produced through the CoMn-ONSs interacting with dissolved oxygen. Afterward, the pink oxDPD was generated through the oxidation of colorless N,N-diethyl-p-phenylenediamine (DPD) by O 2 •- , and two absorption peaks at 510 and 551 nm could be observed. Simultaneously, oxDPD could quench the fluorescence of PEI-AgNCs at 504 nm via the inner filter effect (IFE). However, in the presence of glutathione (GSH), GSH prevents the oxidation of DPD due to the reducibility of GSH, leading to the absorbance decrease at 510 and 551 nm. Furthermore, the fluorescence at 504 nm was restored due to the quenching effect of oxDPD on decreased PEI-AgNCs. Under the catalysis of GST, GSH and1-chloro-2,4-dinitrobenzo (CDNB) conjugate to generate an adduct, initiating the occurrence of the oxidation of the chromogenic substrate DPD, thereby inducing a distinct colorimetric response again and the significant quenching of PEI-AgNCs. The detection limits for GST determination were 0.04 and 0.21 U/L for fluorometric and colorimetric modes, respectively. The sensing platform illustrated reliable applicability in detecting GST in real samples.
Keyphrases
- fluorescent probe
- gold nanoparticles
- reduced graphene oxide
- living cells
- energy transfer
- photodynamic therapy
- visible light
- hydrogen peroxide
- high throughput
- quantum dots
- metal organic framework
- sensitive detection
- molecularly imprinted
- single molecule
- label free
- risk assessment
- light emitting
- silver nanoparticles
- highly efficient
- oxide nanoparticles
- solid phase extraction
- loop mediated isothermal amplification
- drug delivery
- high resolution
- mass spectrometry
- protein kinase
- amino acid