Nitrogen-Enriched Biguanidine-Functionalized Cobalt Ferrite Nanoparticles as a Heterogeneous Base Catalyst for Knoevenagel Condensation under Solvent-Free Conditions.
Anupam MishraPriyanka YadavSatish Kumar AwasthiPublished in: ACS organic & inorganic Au (2023)
Designing efficient, economical heterogeneous catalysts for the Knoevenagel condensation reaction is highly significant owing to the importance of reaction products in industries as well as pharmaceutics. Herein, we have designed and synthesized biguanidine-functionalized basic magnetically retrievable cobalt ferrite nanoparticles (CFNPs) for the synthesis of Knoevenagel condensation products using benzaldehydes and active methylene compounds (malononitrile/ethyl cyanoacetate/cyanoacetamide). Several advanced techniques, such as Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and vibration sample magnetometry (VSM), were utilized to precisely characterize the catalyst. The robust features of the current approach involve outstanding catalytic performance, solvent-free reaction conditions, ease of catalyst retrievability, easy workup procedure, large substrate tolerance, high turnover frequency (TOF) values (up to 486.88 h -1 ), values of green chemistry metrics such as E-factor (0.15), reaction mass efficiency (RME) value (87.07%), carbon efficiency (93.4%), and atom economy (AE) value (88.10%) close to their ideal values, and recyclability up to eight runs without a considerable reduction in activity, boosting the appeal of this approach from a commercial and ecological point of view.
Keyphrases
- electron microscopy
- ionic liquid
- reduced graphene oxide
- metal organic framework
- highly efficient
- room temperature
- electron transfer
- mass spectrometry
- carbon dioxide
- gold nanoparticles
- ms ms
- molecular dynamics
- visible light
- high resolution
- magnetic resonance imaging
- magnetic resonance
- body composition
- human health
- climate change