Login / Signup

Sub-nanosecond signal propagation in anisotropy-engineered nanomagnetic logic chains.

Zheng GuMark E NowakowskiDavid B CarltonRalph StorzMi-Young ImJeongmin HongWeilun ChaoBrian LambsonPatrick BennettMohmmad T AlamMatthew A MarcusAndrew DoranAnthony YoungAndreas SchollPeter FischerJeffrey Bokor
Published in: Nature communications (2015)
Energy efficient nanomagnetic logic (NML) computing architectures propagate binary information by relying on dipolar field coupling to reorient closely spaced nanoscale magnets. Signal propagation in nanomagnet chains has been previously characterized by static magnetic imaging experiments; however, the mechanisms that determine the final state and their reproducibility over millions of cycles in high-speed operation have yet to be experimentally investigated. Here we present a study of NML operation in a high-speed regime. We perform direct imaging of digital signal propagation in permalloy nanomagnet chains with varying degrees of shape-engineered biaxial anisotropy using full-field magnetic X-ray transmission microscopy and time-resolved photoemission electron microscopy after applying nanosecond magnetic field pulses. An intrinsic switching time of 100 ps per magnet is observed. These experiments, and accompanying macrospin and micromagnetic simulations, reveal the underlying physics of NML architectures repetitively operated on nanosecond timescales and identify relevant engineering parameters to optimize performance and reliability.
Keyphrases