Login / Signup

Autophagy induction during stem cell activation plays a key role in salivary gland self-renewal.

Idil OrhonCecilia RocchiBeatriz Villarejo-ZoriPaola Serrano MartinezMirjam BaanstraUilke BrouwerPatricia BoyaRobert P CoppesFulvio M Reggiori
Published in: Autophagy (2021)
Relatively quiescent tissues like salivary glands (SGs) respond to stimuli such as injury to expand, replace and regenerate. Resident stem/progenitor cells are key in this process because, upon activation, they possess the ability to self-renew. Macroautophagy/autophagy contributes to and regulates differentiation in adult tissues, but an important question is whether this pathway promotes stem cell self-renewal in tissues. We took advantage of a 3D organoid system that allows assessing the self-renewal of mouse SGs stem cells (SGSCs). We found that autophagy in dormant SGSCs has slower flux than self-renewing SGSCs. Importantly, autophagy enhancement upon SGSCs activation is a self-renewal feature in 3D organoid cultures and SGs regenerating in vivo. Accordingly, autophagy ablation in SGSCs inhibits self-renewal whereas pharmacological stimulation promotes self-renewal of mouse and human SGSCs. Thus, autophagy is a key pathway for self-renewal activation in low proliferative adult tissues, and its pharmacological manipulation has the potential to promote tissue regeneration.
Keyphrases
  • stem cells
  • cell death
  • endoplasmic reticulum stress
  • signaling pathway
  • oxidative stress
  • gene expression
  • endothelial cells
  • cell therapy
  • machine learning
  • risk assessment
  • quality improvement
  • human health