Login / Signup

Increased soil release of greenhouse gases shrinks terrestrial carbon uptake enhancement under warming.

Shuwei LiuYajing ZhengRuoya MaKai YuZhaoqiang HanShuqi XiaoZhaofu LiShuang WuShuqing LiJinyang WangYiqi LuoJianwen Zou
Published in: Global change biology (2020)
Warming can accelerate the decomposition of soil organic matter and stimulate the release of soil greenhouse gases (GHGs), but to what extent soil release of methane (CH4 ) and nitrous oxide (N2 O) may contribute to soil C loss for driving climate change under warming remains unresolved. By synthesizing 1,845 measurements from 164 peer-reviewed publications, we show that around 1.5°C (1.16-2.01°C) of experimental warming significantly stimulates soil respiration by 12.9%, N2 O emissions by 35.2%, CH4 emissions by 23.4% from rice paddies, and by 37.5% from natural wetlands. Rising temperature increases CH4 uptake of upland soils by 13.8%. Warming-enhanced emission of soil CH4 and N2 O corresponds to an overall source strength of 1.19, 1.84, and 3.12 Pg CO2 -equivalent/year under 1°C, 1.5°C, and 2°C warming scenarios, respectively, interacting with soil C loss of 1.60 Pg CO2 /year in terms of contribution to climate change. The warming-induced rise in soil CH4 and N2 O emissions (1.84 Pg CO2 -equivalent/year) could reduce mitigation potential of terrestrial net ecosystem production by 8.3% (NEP, 22.25 Pg CO2 /year) under warming. Soil respiration and CH4 release are intensified following the mean warming threshold of 1.5°C scenario, as compared to soil CH4 uptake and N2 O release with a reduced and less positive response, respectively. Soil C loss increases to a larger extent under soil warming than under canopy air warming. Warming-raised emission of soil GHG increases with the intensity of temperature rise but decreases with the extension of experimental duration. This synthesis takes the lead to quantify the ecosystem C and N cycling in response to warming and advances our capacity to predict terrestrial feedback to climate change under projected warming scenarios.
Keyphrases
  • climate change
  • plant growth
  • heavy metals
  • wastewater treatment
  • diabetic rats
  • organic matter
  • municipal solid waste