A Unified and Desymmetric Approach to Chiral Tertiary Alkyl Halides.
Yin ZhengSuihan ZhangKam-Hung LowWeiwei ZiZhongxing HuangPublished in: Journal of the American Chemical Society (2022)
Enantioenriched tertiary alkyl halides are prevalent in bioactive molecules and can serve as versatile synthetic intermediates to construct complex structures. While conventional access to these motifs often hinges on stereoselective carbon-halogen or carbon-carbon bond formation reactions, desymmetric approaches using halogenated and prochiral tetrasubstituted carbons are largely elusive in comparison. Here, we report that a suite of dinuclear zinc catalysts with a prolinol- or pipecolinol-derived tetradentate ligand can reductively desymmetrize a large collection of easily available halomalonic esters to α-halo-β-hydroxyesters. These polyfunctionalized tertiary alkyl fluorides, chlorides, and bromides proved to be useful intermediates toward fluorinated drug analogs and polyhalogenated monoterpenes. The facile intramolecular epoxidation of the chiral chloride and bromide products has also enabled expeditious access to natural products containing tertiary alcohol motifs.