Interactive Materials for Bidirectional Redox-Based Communication.
Jinyang LiSally P WangGuanghui ZongEunkyoung KimChen-Yu TsaoEric VanArsdaleLai-Xi WangWilliam E BentleyGregory F PaynePublished in: Advanced materials (Deerfield Beach, Fla.) (2021)
Emerging research indicates that biology routinely uses diffusible redox-active molecules to mediate communication that can span biological systems (e.g., nervous and immune) and even kingdoms (e.g., a microbiome and its plant/animal host). This redox modality also provides new opportunities to create interactive materials that can communicate with living systems. Here, it is reported that the fabrication of a redox-active hydrogel film can autonomously synthesize a H2 O2 signaling molecule for communication with a bacterial population. Specifically, a catechol-conjugated/crosslinked 4-armed thiolated poly(ethylene glycol) hydrogel film is electrochemically fabricated in which the added catechol moieties confer redox activity: the film can accept electrons from biological reductants (e.g., ascorbate) and donate electrons to O2 to generate H2 O2 . Electron-transfer from an Escherichia coli culture poises this film to generate the H2 O2 signaling molecule that can induce bacterial gene expression from a redox-responsive operon. Overall, this work demonstrates that catecholic materials can participate in redox-based interactions that elicit specific biological responses, and also suggests the possibility that natural phenolics may be a ubiquitous biological example of interactive materials.