Login / Signup

Leakage-Proof Flexible Phase Change Gels with Salient Thermal Conductivity for Efficient Thermal Management.

Hong CaoYuan LiWeidi XuJie YangZheng-Ying LiuLu BaiWei YangMing-Bo Yang
Published in: ACS applied materials & interfaces (2022)
Phase change materials (PCMs) as one of the most potential latent heat storage techniques have been widely used for thermal management and energy storage. However, simultaneously imparting flexibility, high thermal conductivity, and considerable energy storage density to organic PCMs remains challenging. In this work, a coupling strategy combining substance exchange and magnetic orientation has been proposed to fabricate phase change gels (PCGs) with thermally induced flexibility and high through-plane thermal conductivity. In the PCGs, synthesized boron nitride/ferroferric oxide (BN@Fe 3 O 4 ) particles and polyacrylic acid (PAA) precursor liquid are introduced to polyethylene glycol (PEG) aqueous solution, and a magnetic field is applied in the process of PAA network construction to promote ordered arrangement of BN@Fe 3 O 4 along the direction of the magnetic field. Consequently, PEG is wrapped by the cross-linked PAA supporting network, forming PCGs with excellent shape stability and thermally induced flexibility. The vertical orientation structure of BN@Fe 3 O 4 endows the PCGs with an enhanced through-plane thermal conductivity of up to 1.07 W m -1 K -1 at a BN@Fe 3 O 4 loading of 25.6 wt % with an additional enhancement of 215% compared to the composite without BN. The thermally conductive leakage-proof PCGs present great application potential in heat storage and management.
Keyphrases
  • drug delivery
  • high glucose
  • diabetic rats
  • aqueous solution
  • endothelial cells
  • oxidative stress
  • drug induced
  • quantum dots
  • room temperature