Login / Signup

A Miniaturized, Battery-free, Wireless Wound Monitor that Predicts Wound Closure Rate Early.

Nate T GarlandJoseph W SongTengfei MaYong Jae KimAbraham Vázquez-GuardadoAyemeh Bagheri HashkavayiSankalp Koduvayur GaneshanNivesh SharmaHanjun RyuMin-Kyu LeeBrandon SumpioMargaret A JakusViviane ForsbergRajaram KavetiSamuel K SiaAristidis VevesJohn A RogersGuillermo A AmeerAmay Jairaj Bandodkar
Published in: Advanced healthcare materials (2023)
Diabetic foot ulcers are chronic wounds that affect millions, and increase the risk of amputation and mortality, highlighting the critical need for their early detection. Recent demonstrations of wearable sensors enable real-time wound assessment, but they rely on bulky electronics, making them difficult to interface with wounds. Here, w e introduce a miniaturized, wireless, battery-free wound monitor that measures lactate in real-time and seamlessly integrates with bandages for conformal attachment to the wound bed. W e select lactate due to its multifaceted role in initiating healing. Studies in healthy and diabetic mice reveal distinct lactate profiles for normal and impaired healing wounds. A mathematical model based on the sensor data predicts wound closure rate within the first three days post-injury with ∼76% accuracy which increases to ∼83% when pH is included. These studies underscore the significance of monitoring biomarkers during the inflammation phase, which can offer several benefits, including short-term use of wound monitors and their easy removal, resulting in lower risks of injury and infection at the wound site. Improvements in prediction accuracy can be achieved by designing mathematical models that build on multiple wound parameters such as pro-inflammatory and metabolic markers. Achieving this goal will require designing multi-analyte wound monitors. This article is protected by copyright. All rights reserved.
Keyphrases
  • wound healing
  • surgical site infection
  • gene expression
  • cardiovascular disease
  • blood pressure
  • dna methylation
  • risk assessment
  • electronic health record
  • risk factors
  • cardiovascular events
  • lower limb