Disruption of bacterial biofilms by a green synthesized artemisinin nano-copper nanomaterial.
Yan ZhangXia HuaXiaohu HanXue FangPeng LiJingbo ZhaiLin XieYanming LvYonghao LaiChengcheng MengYi ZhangShi-Wei LiuZeliang ChenPublished in: Metallomics : integrated biometal science (2024)
Bacterial biofilms are associated with antibiotic resistance and account for ∼80% of all bacterial infections. In this study, we explored novel nanomaterials for combating bacteria and their biofilms. Artemisinin nano-copper (ANC) was synthesized using a green synthesis strategy, and its shape, size, structure, elemental composition, chemical valence, zeta potential, and conductivity were characterized using transmission electron microscopy, X-ray diffractometer, X-ray photoelectron spectroscopy, zeta potential, and dynamic light scattering. The results showed that ANC was successfully synthesized utilizing a liquid phase chemical reduction method using chitosan as a modified protectant and l-ascorbic acid as a green reducing agent. The stability of ANC was evaluated using dynamic light scattering. The results showed that the particle size of ANC at different concentrations was comparable to that of the original solution after 7 days of storage, and there was no significant change in the polydispersity index (P > 0.05). The antibacterial effects of ANC on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were determined by disc diffusion and broth dilution methods. The results demonstrated that ANC inhibited and killed E. coli and S. aureus. The effect of ANC on bacterial biofilms was investigated using crystal violet staining, scanning electron microscopy, laser confocal microscopy, and quantitative polymerase chain reaction. The results showed that ANC treatment was able to destroy bacterial biofilms and downregulate biofilm- and virulence-related genes in E. coli (HlyA, gyrA, and F17) and S. aureus (cna, PVL, ClfA, and femB). Green-synthesized ANC possesses excellent antibiofilm properties and is expected to exhibit antibacterial and antibiofilm properties.
Keyphrases
- electron microscopy
- escherichia coli
- candida albicans
- staphylococcus aureus
- high resolution
- biofilm formation
- oxide nanoparticles
- pseudomonas aeruginosa
- magnetic resonance imaging
- drug delivery
- magnetic resonance
- antimicrobial resistance
- dual energy
- human health
- ionic liquid
- multidrug resistant
- cystic fibrosis
- risk assessment
- simultaneous determination
- ms ms
- high speed
- replacement therapy