mTORC1/2 dual inhibitors may be more effective than mTORC1 inhibitor rapamycin. However, their metabolic impacts on colon cancer cells remain unexplored. We conducted a comparative analysis of the anti-proliferative effects of rapamycin and the novel OSI-027 in colon cancer cells HCT-116, evaluating their metabolic influences through ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS/MS). Our results demonstrate that OSI-027 more effectively inhibits colon cancer cell proliferation than rapamycin. Additionally, we identified nearly 600 metabolites from the spectra, revealing significant differences in metabolic patterns between cells treated with OSI-027 and rapamycin. Through VIP value screening, we pinpointed crucial metabolites contributing to these distinctions. For inhibiting glycolysis and reducing glucose consumption, OSI-027 was likely to be more potent than rapamycin. For amino acids metabolism, although OSI-027 has a broad effect as rapamycin, their effects in degrees were not exactly the same. These findings address the knowledge gap regarding mTORC1/2 dual inhibitors and lay a foundation for their further development and research.
Keyphrases
- ms ms
- mass spectrometry
- ultra high performance liquid chromatography
- cell proliferation
- simultaneous determination
- tandem mass spectrometry
- liquid chromatography tandem mass spectrometry
- healthcare
- signaling pathway
- induced apoptosis
- liquid chromatography
- type diabetes
- high resolution
- cell cycle
- skeletal muscle
- metabolic syndrome
- blood pressure
- weight loss
- blood glucose
- cell death
- gas chromatography
- molecular dynamics