Enzymatic Enantioselective anti-Markovnikov Hydration of Aryl Alkenes.
Hui LinYinyin MengNa LiYanhong TangShuang DongZhongliu WuCuilian XuRomas KazlauskasHongge ChenPublished in: Angewandte Chemie (International ed. in English) (2022)
The addition of water to alkenes is an important method for the synthesis of alcohols, but the regioselectivity of acid-catalyzed hydration of terminal alkenes yields secondary alcohols according to Markovnikov's rule, making it difficult to obtain primary alcohols. Here we report a styrene monooxygenase that catalyzes the anti-Markovnikov hydration of the terminal aryl alkenes under anaerobic conditions. This hydration provides primary alcohols in good yields (up to 100 %), excellent anti-Markovnikov regioselectivity (>99 : 1), and good enantiomeric purity (60-83 % ee). Residues Asn46, Asp100, and Asn309 are essential for catalysis suggesting an acid-base mechanism with a carbanion-like intermediate that could account for the anti-Markovnikov regioselectivity. Our work reveals a new enzymatic tool with unusual regioselectivity based on the promiscuous catalytic activity of a monooxygenase.