Login / Signup

Stable and selective catalysts for propane dehydrogenation operating at thermodynamic limit.

Ali Hussain MotagamwalaRawan AlmallahiJames WortmanValentina Omoze IgenegbaiSuljo Linic
Published in: Science (New York, N.Y.) (2021)
Intentional ("on-purpose") propylene production through nonoxidative propane dehydrogenation (PDH) holds great promise for meeting the increasing global demand for propylene. For stable performance, traditional alumina-supported platinum-based catalysts require excess tin and feed dilution with hydrogen; however, this reduces per-pass propylene conversion and thus lowers catalyst productivity. We report that silica-supported platinum-tin (Pt1Sn1) nanoparticles (<2 nanometers in diameter) can operate as a PDH catalyst at thermodynamically limited conversion levels, with excellent stability and selectivity to propylene (>99%). Atomic mixing of Pt and Sn in the precursor is preserved upon reduction and during catalytic operation. The benign interaction of these nanoparticles with the silicon dioxide support does not lead to Pt-Sn segregation and formation of a tin oxide phase that can occur over traditional catalyst supports.
Keyphrases