Login / Signup

Insight into the Selective Methylene Oxidation Catalyzed by Mn(CF3-PDP)(SbF6)2/H2O2/CH2ClCO2H) System: A DFT Mechanistic Study.

Ruihua ZhaoXiang-Yu ChenZhi-Xiang Wang
Published in: Organic letters (2021)
DFT study was employed to gain insight into methylene oxidation catalyzed by Mn(CF3-PDP)(NCMe)2 (SbF6)2/H2O2/HOAcCl(OACCl ═OC(O)CH2Cl). The active catalyst was characterized to be [Mn](O)OAcCl ([Mn]═Mn(CF3-PDP)2+) which is generated via a sequence from [Mn] to [Mn]OH to [Mn]OAcCl to [Mn]OOH. With the active catalyst, the methylene group is sequentially oxidized to an alcohol and then to a carbonyl group via rebound mechanism. The mechanism explains the observed site selectivity.
Keyphrases
  • room temperature
  • metal organic framework
  • transition metal
  • ionic liquid
  • cystic fibrosis
  • molecular docking
  • molecular dynamics simulations