Login / Signup

Remote Aerosol Simulated During the Atmospheric Tomography (ATom) Campaign and Implications for Aerosol Lifetime.

Chloe Yuchao GaoColette L HealdJoseph M KatichGan LuoFangqun Yu
Published in: Journal of geophysical research. Atmospheres : JGR (2022)
We investigate and assess how well a global chemical transport model (GEOS-Chem) simulates submicron aerosol mass concentrations in the remote troposphere. The simulated speciated aerosol (organic aerosol (OA), black carbon, sulfate, nitrate, and ammonium) mass concentrations are evaluated against airborne observations made during all four seasons of the NASA Atmospheric Tomography Mission (ATom) deployments over the remote Pacific and Atlantic Oceans. Such measurements over pristine environments offer fresh insights into the spatial (Northern [NH] and Southern Hemispheres [SH], Atlantic, and Pacific Oceans) and temporal (all seasons) variability in aerosol composition and lifetime, away from continental sources. The model captures the dominance of fine OA and sulfate aerosol mass concentrations in all seasons. There is a high bias across all species in the ATom-2 (NH winter) simulations; implementing recent updates to the wet scavenging parameterization improves our simulations, eliminating the large ATom-2 (NH winter) bias, improving the ATom-1 (NH summer) and ATom-3 (NH fall) simulations, but producing a model underestimate in aerosol mass concentrations for the ATom-4 (NH spring) simulations. Following the wet scavenging updates, simulated global annual mean aerosol lifetimes vary from 1.9 to 4.0 days, depending on species. Aerosol lifetimes in each hemisphere vary by season, and are longest for carbonaceous aerosol during the southern hemispheric fire season. The updated wet scavenging parameterization brings simulated concentrations closer to observations and reduces global aerosol lifetime for all species, indicating the sensitivity of global aerosol lifetime and burden to wet removal processes.
Keyphrases
  • water soluble
  • molecular dynamics
  • room temperature
  • particulate matter
  • drinking water
  • electron transfer
  • monte carlo
  • perovskite solar cells