Self-Searching Writing of Human-Organ-Scale Three-Dimensional Topographic Scaffolds with Shape Memory by Silkworm-like Electrospun Autopilot Jet.
Balchandar NavaneethanChia-Fu ChouPublished in: ACS applied materials & interfaces (2022)
Bioengineered scaffolds satisfying both the physiological and anatomical considerations could potentially repair partially damaged tissues to whole organs. Although three-dimensional (3D) printing has become a popular approach in making 3D topographic scaffolds, electrospinning stands out from all other techniques for fabricating extracellular matrix mimicking fibrous scaffolds. However, its complex charge-influenced jet-field interactions and the associated random motion were hardly overcome for almost a century, thus preventing it from being a viable technique for 3D topographic scaffold construction. Herein, we constructed, for the first time, geometrically challenging 3D fibrous scaffolds using biodegradable poly(ε-caprolactone), mimicking human-organ-scale face, female breast, nipple, and vascular graft, with exceptional shape memory and free-standing features by a novel field self-searching process of autopilot polymer jet, essentially resembling the silkworm-like cocoon spinning. With a simple electrospinning setup and innovative writing strategies supported by simulation, we successfully overcame the intricate jet-field interactions while preserving high-fidelity template topographies, via excellent target recognition, with pattern features ranging from 100's μm to 10's cm. A 3D cell culture study ensured the anatomical compatibility of the so-made 3D scaffolds. Our approach brings the century-old electrospinning to the new list of viable 3D scaffold constructing techniques, which goes beyond applications in tissue engineering.